Fourier-Integral-Operator Approximation of Solutions to First-Order Hyperbolic Pseudodifferential Equations I: Convergence in Sobolev Spaces
نویسندگان
چکیده
منابع مشابه
Fourier-integral-operator approximation of solutions to first-order hyperbolic pseudodifferential equations I: convergence in Sobolev spaces
An approximation Ansatz for the operator solution, U(z′, z), of a hyperbolic first-order pseudodifferential equation, ∂z +a(z, x, Dx) with Re(a) ≥ 0, is constructed as the composition of global Fourier integral operators with complex phases. An estimate of the operator norm in L(H, H) of these operators is provided which allows to prove a convergence result for the Ansatz to U(z′, z) in some So...
متن کاملFourier-integral-operator product representation of solutions to first-order symmetrizable hyperbolic systems
We consider the first-order Cauchy problem ∂zu + a(z, x,Dx)u = 0, 0 < z ≤ Z, u |z=0 = u0, with Z > 0 and a(z, x,Dx) a k×k matrix of pseudodifferential operators of order one, whose principal part a1 is assumed symmetrizable: there exists L(z, x, ξ) of order 0, invertible, such that a1(z, x, ξ) = L(z, x, ξ) (−iβ1(z, x, ξ) + γ1(z, x, ξ)) (L(z, x, ξ))−1, where β1 and γ1 are hermitian symmetric and...
متن کاملFirst-order Hyperbolic Pseudodifferential Equations with Generalized Symbols
We consider the Cauchy problem for a hyperbolic pseudodifferential operator whose symbol is a Colombeau generalized function. Such equations arise, for example, after a reduction-decoupling of second-order model systems of differential equations in seismology. We prove existence of a unique generalized solution under log-type growth conditions on the symbol, thereby extending known results for ...
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملWeakly Hyperbolic Equations with Time Degeneracy in Sobolev Spaces
The theory of nonlinear weakly hyperbolic equations was developed during the last decade in an astonishing way. Today we have a good overview about assumptions which guarantee local well posedness in spaces of smooth functions (C∞, Gevrey). But the situation is completely unclear in the case of Sobolev spaces. Examples from the linear theory show that in opposite to the strictly hyperbolic case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2006
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605300600635079